# Incomplete guide to Options Greeks

## Finance

Greeks or Options Greeks are tools/statistics which measure sensitivity (responsiveness, calculus anyone?) of option price to changes in various parameters: underlying price, volatility, time, etc…

### Terminology

Before digging into math/derivatives/formulas, let's remember the terminology once again, you can see mode details in Black-Scholes formula blog post.

• O - option price of an Call/Put options

• N - Cumulative Distribution Function (CDF)

• P - Probability Density Function (PDF)

• S - Spot price of the underlying asset

• K - striKe price of option

• t - time to expiraTion (in years)

• σ - volatility - standard deviation of log returns (sigma)

• σ² - variance - squared standard deviation of log returns

### Intuition

What the heck are these Greeks?

Greeks are first/second/third/etc-order derivatives of Black-Scholes closed formula with respect to other greek(s) or different variable(s).

And here is an incomplete list of most important greeks used in options trading.

### First-order Geeks

Given O, the option's value (price, premium, etc) the generic term for both C and P option prices. Formula for CALL options will be in green, for PUT in red and blue color when formula is same.

#### Delta - Δ

Option's sensitivity with respect to (w.r.t.) change in underlying price.

$\Delta = \frac{ΔO}{ΔS}$

Formulas: $\textcolor{green}{ \Delta = N(d1) } \\ \textcolor{red}{ \Delta = -N(-d1) }$

#### Vega / Kappa - V / Κ

Change in option's price w.r.t. change in volatility.

$V = \frac{ΔO}{Δσ}$

Note. Vega is not a greek letter, so we will just use V.

Formula: $\textcolor{blue}{ V = S * P(d1) * \sqrt{t} }$

#### Theta - Θ

Change in option's price w.r.t time to expiry.

$\Theta = \frac{ΔO}{Δt}$

Formulas: $\textcolor{green}{ \Theta = -\frac{S*P(d1)*\sigma}{2\sqrt{t}}-r*K*e^{-rt} * N(d2) } \\ \textcolor{red}{ \Theta = -\frac{S*P(d1)*\sigma}{2\sqrt{t}}-r*K*e^{-rt} * N(-d2) }$

#### Rho - Ρ

Changes in option's price w.r.t. risk-free interest rate.

$\rho = \frac{\Delta{O}}{\Delta{r}}$

Formulas: $\textcolor{green}{ \rho = t*K*e^{-rt} * N(d2) } \\ \textcolor{red}{ \rho = -t*K*e^{-rt} * N(-d2) }$

### Second-order greeks

Second-order derivative of option's value with respect to some other variable(s).

#### Gamma - Γ

Change in delta w.r.t. the price of the underlying asset.

• first-order derivative of delta w.r.t. underlying asset

$\Gamma = \frac{\partial{Δ}}{\partial{S}}$

• second-order derivative of option value w.r.t. underlying asset

$\Gamma = \frac{\partial^2{O}}{\partial{S^2}}$

Formula: $\textcolor{blue}{ \Gamma = \frac{P(d1)}{S * \sigma * \sqrt{t}} }$

#### Vomma / Volga

Sensitivity of vega to a change in the volatility.

• first-order derivative of vega w.r.t. volatility

$volga = \frac{\partial{V}}{\partial{σ}}$

• second-order derivative of option's value w.r.t volatility

$volga = \frac{\partial^2{O}}{\partial{σ^2}}$

Formula: $\textcolor{blue}{ volga = P(d1) * \sqrt{t} * \frac{d1 * d2}{\sigma} }$

#### Vanna

This is volatility's cross Greek and is the sensitivity of delta/vega w.r.t. volatility/spot.

• first-order derivative of delta w.r.t. volatility

$vanna = \frac{\partial{Δ}}{\partial{σ}}$

• first-order derivative of vega w.r.t. underlying spot

$vanna = \frac{\partial{V}}{\partial{S}}$

• second-order derivative of option value w.r.t. both underlying spot and volatility

$vanna = \frac{\partial^2{O}}{\partial{\sigma} \partial{S}}$

Formula: $\textcolor{blue}{ vanna = P(d1) * \sqrt{t} * (1 - d1) }$

#### Charm / Delta decay

Change in delta w.r.t. time to expiry.

• first-order derivative of delta w.r.t time

$charm = \frac{\partial{Δ}}{\partial{t}}$

• first-order derivative of theta w.r.t. underlying spot

$charm = \frac{\partial{\theta}}{\partial{S}}$

• second-order derivative of option value w.r.t. both underlying spot and time

$charm = \frac{\partial^2{O}}{\partial{S} \partial{t}}$

#### Vera / Rhova

Change in rho w.r.t. volatility.

• first-order derivative of rho w.r.t. volatility

$vera = \frac{\partial{\rho}}{\partial{σ}}$

• first-order derivative of vega w.r.t. interest rate

$vera = \frac{\partial{V}}{\partial{r}}$

• second-order derivative of option price w.r.t. interest rate and volatility

$vera = \frac{\partial^2{O}}{\partial{r} \partial{\sigma}}$

#### Veta / Vega decay

Change in vega w.r.t. time.

• first-order derivative of vega w.r.t. time to expiry

$veta = \frac{\partial{V}}{\partial{t}}$

• first-order derivative of theta w.r.t. volatility

$veta = \frac{\partial{\theta}}{\partial{\sigma}}$

• second-order derivative of option's value w.r.t. volatility and time

$veta = \frac{\partial^2{O}}{\partial{\sigma} \partial{t}}$

### Third-order Greeks

Third-order derivative of option's price with respect to some other variable(s).

#### Color / Gamma decay

Gamma w.r.t. time.

$color = \frac{\partial{Γ}}{\partial{t}}$

#### Speed

Gamma w.r.t. underlying spot.

$speed = \frac{\partial{Γ}}{\partial{S}}$

#### Ultima

Vomma w.r.t. volatility.

$ultima = \frac{\partial{vomma}}{\partial{σ}}$

#### Zomma

Gamma w.r.t. volatility.

$zomma = \frac{\partial{Γ}}{\partial{σ}}$

TO BE CONTINUED