Greeks or Options Greeks are tools/statistics which measure sensitivity (responsiveness, calculus anyone?) of option price to changes in various parameters: underlying price, volatility, time, etc…
Terminology
Before digging into math/derivatives/formulas, let's remember the terminology once again, you can see mode details in Black-Scholes formula blog post.
- O - option price of an Call/Put options
- N - Cumulative Distribution Function (CDF)
- P - Probability Density Function (PDF)
- S - Spot price of the underlying asset
- K - striKe price of option
- t - time to expiraTion (in years)
- σ - volatility - standard deviation of log returns (sigma)
- σ² - variance - squared standard deviation of log returns
Intuition
What the heck are these Greeks?
Greeks are first/second/third/etc-order derivatives of Black-Scholes closed formula with respect to other greek(s) or different variable(s).
And here is an incomplete list of most important greeks used in options trading.
First-order Geeks
Given O, the option's value (price, premium, etc) the generic term for both C and P option prices. Formula for CALL options will be in green, for PUT in red and blue color when formula is same.
Delta - Δ
Option's sensitivity with respect to (w.r.t.) change in underlying price.
\[ \Delta = \frac{ΔO}{ΔS} \]
Formulas: \[ \textcolor{green}{ \Delta = N(d1) } \\ \textcolor{red}{ \Delta = -N(-d1) } \]
Vega / Kappa - V / Κ
Change in option's price w.r.t. change in volatility.
\[ V = \frac{ΔO}{Δσ} \]
Note. Vega is not a greek letter, so we will just use V.
Formula: \[ \textcolor{blue}{ V = S * P(d1) * \sqrt{t} } \]
Theta - Θ
Change in option's price w.r.t time to expiry.
\[ \Theta = \frac{ΔO}{Δt} \]
Formulas: \[ \textcolor{green}{ \Theta = -\frac{S*P(d1)*\sigma}{2\sqrt{t}}-r*K*e^{-rt} * N(d2) } \\ \textcolor{red}{ \Theta = -\frac{S*P(d1)*\sigma}{2\sqrt{t}}-r*K*e^{-rt} * N(-d2) } \]
Rho - Ρ
Changes in option's price w.r.t. risk-free interest rate.
\[ \rho = \frac{\Delta{O}}{\Delta{r}} \]
Formulas: \[ \textcolor{green}{ \rho = t*K*e^{-rt} * N(d2) } \\ \textcolor{red}{ \rho = -t*K*e^{-rt} * N(-d2) } \]
Second-order greeks
Second-order derivative of option's value with respect to some other variable(s).
Gamma - Γ
Change in delta w.r.t. the price of the underlying asset.
- first-order derivative of delta w.r.t. underlying asset
\[ \Gamma = \frac{\partial{Δ}}{\partial{S}} \]
- second-order derivative of option value w.r.t. underlying asset
\[ \Gamma = \frac{\partial^2{O}}{\partial{S^2}} \]
Formula: \[ \textcolor{blue}{ \Gamma = \frac{P(d1)}{S * \sigma * \sqrt{t}} } \]
Vomma / Volga
Sensitivity of vega to a change in the volatility.
- first-order derivative of vega w.r.t. volatility
\[ volga = \frac{\partial{V}}{\partial{σ}} \]
- second-order derivative of option's value w.r.t volatility
\[ volga = \frac{\partial^2{O}}{\partial{σ^2}} \]
Formula: \[ \textcolor{blue}{ volga = P(d1) * \sqrt{t} * \frac{d1 * d2}{\sigma} } \]
Vanna
This is volatility's cross Greek and is the sensitivity of delta/vega w.r.t. volatility/spot.
- first-order derivative of delta w.r.t. volatility
\[ vanna = \frac{\partial{Δ}}{\partial{σ}} \]
- first-order derivative of vega w.r.t. underlying spot
\[ vanna = \frac{\partial{V}}{\partial{S}} \]
- second-order derivative of option value w.r.t. both underlying spot and volatility
\[ vanna = \frac{\partial^2{O}}{\partial{\sigma} \partial{S}} \]
Formula: \[ \textcolor{blue}{ vanna = P(d1) * \sqrt{t} * (1 - d1) } \]
Charm / Delta decay
Change in delta w.r.t. time to expiry.
- first-order derivative of delta w.r.t time
\[ charm = \frac{\partial{Δ}}{\partial{t}} \]
- first-order derivative of theta w.r.t. underlying spot
\[ charm = \frac{\partial{\theta}}{\partial{S}} \]
- second-order derivative of option value w.r.t. both underlying spot and time
\[ charm = \frac{\partial^2{O}}{\partial{S} \partial{t}} \]
Vera / Rhova
Change in rho w.r.t. volatility.
- first-order derivative of rho w.r.t. volatility
\[ vera = \frac{\partial{\rho}}{\partial{σ}} \]
- first-order derivative of vega w.r.t. interest rate
\[ vera = \frac{\partial{V}}{\partial{r}} \]
- second-order derivative of option price w.r.t. interest rate and volatility
\[ vera = \frac{\partial^2{O}}{\partial{r} \partial{\sigma}} \]
Veta / Vega decay
Change in vega w.r.t. time.
- first-order derivative of vega w.r.t. time to expiry
\[ veta = \frac{\partial{V}}{\partial{t}} \]
- first-order derivative of theta w.r.t. volatility
\[ veta = \frac{\partial{\theta}}{\partial{\sigma}} \]
- second-order derivative of option's value w.r.t. volatility and time
\[ veta = \frac{\partial^2{O}}{\partial{\sigma} \partial{t}} \]
Third-order Greeks
Third-order derivative of option's price with respect to some other variable(s).
Color / Gamma decay
Gamma w.r.t. time.
\[ color = \frac{\partial{Γ}}{\partial{t}} \]
Speed
Gamma w.r.t. underlying spot.
\[ speed = \frac{\partial{Γ}}{\partial{S}} \]
Ultima
Vomma w.r.t. volatility.
\[ ultima = \frac{\partial{vomma}}{\partial{σ}} \]
Zomma
Gamma w.r.t. volatility.
\[ zomma = \frac{\partial{Γ}}{\partial{σ}} \]
TO BE CONTINUED…
References
- https://www.macroption.com/option-greeks/
- https://www.macroption.com/higher-order-greeks/
- https://www.iotafinance.com/en/Financial-Formulas-6-19.html
- https://www.macroption.com/second-order-greeks/
- https://brilliant.org/wiki/option-greeks-vega/
- https://fincyclopedia.net/derivatives/g/gamma
- https://www.investopedia.com/terms/v/vomma.asp
- https://quant.stackexchange.com/questions/7025/how-to-calculate-vomma-of-black-scholes-model
- http://www.ericbenhamou.net/documents/Encyclo/Vanna.pdf
- https://fincyclopedia.net/derivatives/d/delta-decay
- https://www.optiontradingtips.com/greeks/charm.html
- https://www.macroption.com/option-vera/
- https://financetrainingcourse.com/education/2014/06/vega-volga-and-vanna-the-volatility-greeks/
- https://www.macroption.com/third-order-greeks/
- https://www.investopedia.com/terms/z/zomma.asp
- http://www.ericbenhamou.net/documents/Encyclo/
- https://brilliant.org/wiki/put-call-parity/
- https://twitter.com/macrocephalopod/status/1359154681679917061
- https://www.youtube.com/watch?v=VfV8bY2LN4Q